
Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 1

Using MCP EMAIL, 2.0

2021 UNITE Virtual Conference
Session 4021

Wednesday, 9 February 2022, 1:30 p.m. EST

Paul Kimpel
San Diego, California

http://www.digm.com

e-mail: paul.kimpel@digm.com

Copyright © 2022, Paul H. Kimpel

Reproduction permitted provided this copyright notice is preserved
and appropriate credit is given in derivative materials.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 2

Today I would like to discuss what to me is one of the nicest facilities of the MCP – the ability to send email
messages from MCP-resident applications. This is an update of a presentation I made at the 2009 UNITE
Conference in Minneapolis.

I'll start with a brief overview of email in general – the components, protocols, and message formats used.

Next, I'll briefly discuss a few methods for sending email from MCP applications, using both bundled and
third-party solutions.

The bulk of this presentation will be devoted to one of those methods, the OBJECT/EMAIL utility that is
bundled with the standard MCP release. I will discuss how to install and run the utility, the components of its
command parameter syntax, options it supports for sending email messages, how it can be called from
application programs in addition to run as a utility program, and how it handles errors and retry operations.

I will finish with some examples of OBJECT/EMAIL put to use in a real environment.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 3

To begin, let us briefly review the concepts and components that make email in general work.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 4

Email has been described as the "killer app" of the Internet. There are lots of wonderful applications of
Internet technology, but email remains the most significant one. We could probably do without the Web,
although that would be a great loss. We could probably not do without email at this point.

Email is a store-and-forward messaging facility. It is like teletype and SMS phone messaging in that respect,
and unlike telephone voice calls. A great deal of its utility and popularity comes from the fact that the receiver
does not need to be available when the sender wishes to communicate. Messages are stored until the receiver
gets around to checking for them.

One thing that has made email a success is that it is based on open standards. No one owns email, and there is
a vibrant collection of both proprietary and open source solutions for creating, sending, receiving, and reading
email messages.

Another thing responsible for its success is that email is awesomely scalable. The whole planet now
communicates using message formats and standards that, while they have been enhanced over the years, have
not substantially changed since the early 1980s. Part of this success is due to the underlying openness and
scalability of TCP/IP and the Internet, but much is due to the original design of the email formats and
protocols.

Email systems are composed of three basic components:
• Mail Transfer Agents, or MTAs. These are also known as "mail exchangers," and are the programs

responsible for sending and routing email messages to their destinations. The protocols were originally
designed to allow mail to be routed through a web of interconnected MTAs. That can still happen within
large organizations, but with the advent of the Internet, the much more common case today is that the
sending MTA directly contacts the receiving MTA without needing to route a message through
intermediaries.

• Mail Delivery Agents, or MDAs. These are programs that manage mail boxes and deliver mail to end
users. MTAs either deliver mail to MDAs or deposit mail directly in mail boxes for which they are the
receiving agent.

• Mail User Agents, or MUAs. These are end-user client programs used to read and compose email
messages. Microsoft Outlook and Mozilla Thunderbird are common examples of MUAs.

It is not uncommon to see the functions of MTAs and MDAs combined in a single package. Microsoft
Exchange is an example of this. On Unix/Linux systems, the functions are often implemented separately, with
SendMail and Postfix being examples of MTAs, and Dovecot, maildrop, and procmail being examples of
MDAs.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 5

This slide shows the relationship between email protocols and the software components.
• SMTP (Simple Mail Transfer Protocol) is the scheme used to communicate among MTAs. As

mentioned earlier, most sending MTAs can now contact the destination MTAs directly through the
Internet, but SMTP has facilities to allow forwarding of messages through a web of MTAs. Some MTAs
are able to deposit incoming messages directly into the receiving user's mail boxes; others pass the
messages to a delivery agent for mailbox management. SMTP is also used by user agents to send
outgoing emails. Note that SMTP is not used by clients for incoming emails, which is why you usually
need to configure the sending and receiving servers separately in your email client.

• POP3 (Post Office Protocol, version 3) is a scheme used by MDAs and MUAs for delivering incoming
messages to end users. Like mail boxes at a post office, users "pick up" their mail when they read it,
usually transferring the messages to their local system and removing it from the MDA's storage.

• IMAP4 (Internet Message Access Protocol) is an alternate scheme used by MDAs and MUAs for
delivering incoming messages to end users. Unlike POP3, it maintains mailbox messages on the server,
and is commonly used with roaming users or web-mail clients.

• NNTP (Network News Transfer Protocol) is strictly speaking not an email protocol but has many
features in common with email (particularly message formats), and is often implemented in email server
software. This is the protocol used with news groups (e.g., comp.sys.unisys) to distribute and access
news postings.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 6

With that overview of email concepts, let us now talk about methods available to send email from MCP
systems.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 7

There are currently five methods that you can use to send email from an MCP system. If there are more, I am
not aware of them.

I will talk about the first three in this section of the presentation, and the remainder of the presentation will
focus on the fourth, the OBJECT/EMAIL utility.

The last item, "do your own thing," is there to recognize that email is simply a process of sending data over a
TCP/IP connection. The basic SMTP protocol is not that difficult to use, and it's possible to create a solution
of your own by programming TCP port files or sockets. In fact, this is exactly what the Goldeye, MGS, and
OBJECT/EMAIL products do. To give you an idea of the relative simplicity of the basic email protocols, the
implementation of OBJECT/EMAIL for release 53.1 was only 4K lines of DCALGOL.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 8

The second method for sending email from MCP applications involves Enterprise Output Manager (EOM),
formerly known as DEPCON. In its current implementation, EOM runs as a Windows service on a separate
processor. It is primarily a print distribution facility, but also has extensive features for reformatting and
transformation of print data. It can do electronic forms overlay, generate PDF documents, and do custom
reformatting of print data. It is typically accessed from MCP applications by defining a virtual printer device
in the MCP Print System and directing print requests to that printer.

A basic version of EOM, the Departmental Edition, is bundled with the standard Clearpath MCP software
release. The ability to generate PDF documents and do custom reformatting of print data require extra-cost
add-ons, but that bundled version does have the ability to transform print jobs into email messages. In order to
do that, the Windows server on which EOM runs must have MAPI (which is deprecated, but still works) or
CDOSYS (which has been bundled with Windows since Windows 2000). The EOM server must also have
access to an email server (an MTA). A server running IIS SMTP is more than adequate for this purpose.

Email output functions as a “physical” printer in EOM. There is also an email job type which can be activated
from file masks. All EOM features can be applied to print requests that are output to email destinations – print
attributes, data dependent attributes (DDA), PDF output, print stream splitting, multiple destinations, and
custom jobs.

EOM has an additional feature that none of the other methods discussed here possess – it can also receive and
route email messages as if they were incoming print jobs.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 9

The third method for sending email from MCP systems uses a software product from Goldeye Software, Inc.
The Goldeye product is a suite of three independent but interrelated packages, named PrintMailer, MailCall,
and Print2Web.

Each of these packages implements a send-only email client (MUA) that runs in the MCP environment.
Unlike EOM, the packages run entirely within the MCP environment, and no separate Windows server is
required. The Goldeye packages are not a mail server, however, and still require access to an SMTP MTA in
order to work.

The Goldeye packages were written specifically for the MCP and integrate nicely with its facilities, especially
the Print System. They can be used to format MCP print data with forms overlays (with the form template
coming from either a Microsoft RTF document or a PDF document). It also supports multiple output formats,
including HTML, Microsoft RTF, and PDF.

One very impressive feature of the Goldeye suite is that PDF output is built in. The generation of PDF output
(including encryption) is done entirely using native MCP code.

MGS DELIVER is a general-purpose file transfer tool for MCP files. It runs in the MCP environment.

DELIVER supports sending files to multiple types of destinations, including FTP server, SMB shared
directories, BNA hosts, and optionally, an Internet fax service.

Of interest in the context of this presentation is the software’s ability to send files as email messages and
email attachments. It can convert textual MCP record-oriented files to line-delimited text files. It can also
convert MCP printer backup files to text files. Options exist to format the attachment as PDF or as TIFF
image files. There is a mechanism to apply a form overlay to the MCP data. The data can be encrypted in
transit. There is also a binary option to suppress translation and data conversion altogether and send the data
transparently.

Perhaps DELIVER’s strongest point is its universality – a single application and command syntax can handle
a wide variety of file distribution requirements, and a single command can transfer one or more files
(including wildcard selections from directories) to multiple destinations of differing types.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 10

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 11

With that overview of methods for sending email from MCP applications, the rest of this presentation will
focus on our featured method, the OBJECT/EMAIL utility program.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 12

OBJECT/EMAIL is a codefile that functions as both a utility program and an API (library) for MCP
applications. It is bundled with the standard Clearpath IOE. It was initially released with MCP 7.0 / SSR 48.1
in 2002.

OBJECT/EMAIL is a send-only email client (MUA). It supports the composition of basic email messages. It
also has the ability to post messages to a news group using NNTP. It is not a mail server, and like the other
email sending methods we have discussed thus far, requires access to an SMTP server (MTA) in order to
function.

Starting with MCP 53.1, OBJECT/EMAIL supports IPv6 addressing. It also supports SSL/TLS if that has
been enabled for TCP/IP using the NW TCPIP OPTIONS+SSL command. See the discussion on the
*INSTALLATION/OPTIONS file on how to configure OBJECT/EMAIL to use SSL.

The features and interface for this program are based on an older product, A Series Mail, which was last
released with MCP 6.0. That product was a full email system, supporting MTA, MDA, and MUA roles. A
Series Mail was originally BNA-based, with an SMTP interface being added later. Only the SMTP MUA
sending capabilities have been carried forward into OBJECT/EMAIL. If you used A Series Mail, you may
recognize several features in OBJECT/EMAIL.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 13

Here is a quick illustration of OBJECT/EMAIL in action. The WFL job on this slide runs OBJECT/EMAIL
to send a simple message. The utility is controlled by a string parameter. The components of this parameter
are:

• The SEND command indicates that the program is to compose and send an email message (the
alternative to this is SUBMIT, which posts a message to a news group).

• The next item in the parameter string (before the first "&") is a list of To: addresses. In this example,
there is only one To: address.

• Following the first "&" (the one inside the quotes – the ones outside the quotes are of course WFL string
concatenation operators) is the CC: list. Again, this example shows only one address in the list.

• The first "//" terminates the addressing portion of the parameter string. Following that is the subject
line of the message.

• Following the second "//" is the body of the message.
• The file equation for BODY specifies that additional text for the body of the message is to be taken from

the indicated file. This text will be appended to the body text in the parameter string.

Using this data, OBJECT/EMAIL will compose an RFC 822/5322 message and send it to its MTA. How it
knows what that MTA is will be discussed shortly.

The second half of the slide shows an equivalent version of the WFL job using the CANDE Utility command.
In this form, it's a little easier to see the structure of the parameter string, as the quotes and string
concatenation operators have been eliminated. Email addresses are case-insensitive, so this second execution
of the utility performs identically to the first.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 14

OBJECT/EMAIL requires a small amount of configuration. Before describing the rest of its capabilities, let
us discuss how it is installed and configured in the MCP environment.

The program is typically installed by the Simple Install mechanism. That installation process simply copies
the OBJECT/EMAIL codefile to the system and configures the system library function name
EMAILSUPPORT to reference that codefile.

Once installed, OBJECT/EMAIL requires a set of global configuration settings for your email environment.
There are two ways to do this:

• Create a *INSTALLATION/OPTIONS file. This is the recommended method, and the only one that
will be discussed here, starting on the next slide.

• Modify the attributes of the SMTP, NNTP, and ORGANIZATION files in the OBJECT/EMAIL codefile
using WFL MODIFY. See the documentation for instructions on how to do this.

After the global configuration is established, a small amount of configuration is required for each user who
will be sending emails. At a minimum, the sender's email address must be defined to OBJECT/EMAIL.
There are a number of other per-user options that can be specified, as we will discuss later.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 15

The *INSTALLATION/OPTIONS file supplies global configuration parameters to OBJECT/EMAIL. It
must have a filekind of SEQDATA and be stored on the same disk family as the OBJECT/EMAIL codefile.

The configuration data consists of name/value pairs, one per record in the file. A configuration entry can be
continued across records by placing a "%" as the last non-blank character on each line of the entry except the
last. The entries in this file used by OBJECT/EMAIL are:

• EMAIL MAILSERVER – specifies the primary SMTP server (MTA) to which the utility will send the
email messages it composes. This entry is required. It may specify an IP address or domain name.

• EMAIL ALTMAILSERVER – specifies a list of SMTP servers to be used as alternate MTAs if the
primary one is not available.

• EMAIL NEWSSERVER – specifies the primary NNTP news server to which the utility will send news
group postings.

• EMAIL ALTNEWSSERVER – specifies a list of alternate news servers to be used if the primary one is
not available.

• EMAIL HOSTCCS – overrides the default internal character set (the character set used by MCP
applications).

• EMAIL SERVERCCS – overrides the default character set for outgoing messages (those send to the
MTA).

• *COMPANY, *DEPARTMENT, *BUILDING – specify descriptive strings to be included in outgoing
message headers. These apply to NNTP news group postings only.

• EMAIL: <send option> – specifies default message sending options. Sending options will be discussed
later in the section on the program's parameter string syntax. Note the use of a colon (:) instead of an
equal sign (=) in this entry.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 16

This example shows a somewhat contrived global configuration file. The only required entry is the one for
MAILSERVER. Note the use of a percent sign (%) to indicate continuation of an entry across records of the
file.

A server address can be specified as an IP address or a domain name. It can be optionally followed by a colon
and a number to indicate the MTA server is listening on a port other than the default SMTP port 25. By
enclosing a server address in parentheses, you can include additional attributes for the connection. At present
the additional attributes supported are:

• MYIPADDRESS, which specifies the network interface on the MCP system through which connections to
the MTA will be made.

• SSLTYPE, with values OFF and IMPLICIT.

• SECALLOWSELFSIGNED with values TRUE and FALSE. Setting this to TRUE allows
OBJECT/EMAIL to accept SSL connections involving a self-signed certificate.

The example above shows SSL/TLS being enabled and an IPv6 address being used with the MYIPADDRESS
attribute.

Also note the EMAIL: entries specifying global sending options. Note the colon (“:”). These options will be
applied by default to all messages send by OBJECT/EMAIL unless they are explicitly overridden by user-
level configuration or the send options in an individual message. As mentioned earlier, these options will be
discussed later in the section on parameter syntax.

Of particular importance is the EMAIL:LOGIN option, which supplies log-in credentials to the email server.
If either the user name or password contains special characters, those values must be enclosed in either single-
or double-quotation marks. Note that “@” in user names is considered to be a special character.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 17

Having dealt with global configuration for OBJECT/EMAIL, we now turn to the configuration for individual
users. Since the utility runs within the MCP environment, a "user" is identified by an MCP usercode.

At a minimum, each user must be associated with an email address. This is used to annotate outbound
messages with a From: header. There are two ways to make this association:

• By establishing the EMAIL attribute in the user's USERDATA record. This is the only bit of email
configuration data that is stored in a standard USERDATAFILE.

• As a *EMAIL entry in the user's optional CANDE/MYOPTIONS file. Like the CANDE/STARTUP file,
this file (if it exists) must reside under the user's usercode on their default disk family. OBJECT/EMAIL
automatically looks for and processes the entries in CANDE/MYOPTIONS whenever it sends a message
for a user.

There are a number of other entries that can be established in the CANDE/MYOPTIONS file for email and
other uses. We will discuss the email and news options over the next several slides.

This file was initially introduced to provide per-user configuration options for OBJECT/EMAIL, but a few
releases ago was made more general purpose through a series of entry points in the GENERALSUPPORT
library collectively referred to as MYOPTIONSUPPORT. You can use this facility to add your own
configuration items to CANDE/MYOPTIONS and retrieve the data without having to parse the file yourself by
calling the MYOPTIONSUPPORT entry points. The key EMAIL is reserved for use by the MCP, but you can
create entries that use other keys. The capabilities and use of MYOPTIONSUPPORT are discussed in the
section on GENERALSUPPORT in Appendix A of the System Software Utilities Operations Reference

Manual.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 18

The two basic entries you should put in your CANDE/MYOPTIONS file are
• *NAME = <some text intended to be your display name>
• *EMAIL = <your default From: email address>

You can also include *COMPANY, *DEPARTMENT, and *BUILDING entries for NNTP news submissions as
discussed with the global options.

A second class of entries you can make represent default sending options for your messages. These options
will override any specified in the global configuration file, and in turn may be overridden by options specified
in the parameter string to OBJECT/EMAIL. As shown on the slide, you simply write the key EMAIL
followed by a colon (:) and then include the options in a comma-delimited list. You can have multiple entries
for the same key.

You can qualify entries so that they will apply either to email messages or NNTP news group submissions by
following the EMAIL keyword with either MAIL or NEWS. The options specified on this type of entry will
apply only to that type of message in OBJECT/EMAIL.

A third class of entries you can make in CANDE/MYOPTIONS are address aliases, also termed distribution
lists. To define an alias, enter the EMAIL keyword followed by the name you wish to assign to the alias and
then an equal sign (=). After that, enter a comma-delimited list of email references. We will discuss these
email references in detail when discussing parameter syntax, but in brief, these references can be an email
address in the standard name@host.domain form, an MCP usercode, another alias name prefixed by a
crosshatch (#), or the title of a file prefixed by a percent-sign (%). Thus, aliases can be defined recursively,
with one alias including the email addresses defined by another alias. There are some other options for
defining these email reference lists, which will be discussed shortly.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 19

This slide shows a sample CANDE/MYOPTIONS file. It includes
• Some identifying entries for the user.
• A couple of default send options, one that applies to all messages, and one that only applies to email

messages.
• Three alias definitions, CUSTONE, SELF, and THEWORLD. Note that, as with the global configuration

file, entries can be continued across multiple records using a "%" at the end of all but the last record for
an entry.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 20

That concludes the discussion on configuring OBJECT/EMAIL. The next topic concerns running the
program. As mentioned earlier, OBJECT/EMAIL has two modes – it can be run as a standard program (task)
or it can be called as a library with a function name of EMAILSUPPORT. We will first discuss running the
utility as a program.

When run as a program, OBJECT/EMAIL requires a single string parameter. All options for the program can
be specified through the parameter string. Some options can be activated by equating files to certain
INTNAMEs. The parameter syntax and file equation options will be discussed over the next several slides.

OBJECT/EMAIL returns a result code in its TASKVALUE attribute. This result word consists of two bit
fields:

• Bit [0:1] indicates whether there was an error. A value of zero indicates the run was successful or
generated a warning. A value of one indicates there was an error that prevented the message from being
sent. Note that an indication of success or error concerns the program's ability to contact and deliver the
message to the MTA, not to the ultimate addressees. Delivery to the addressees is the MTA's job.

• Bits [7:7] indicate an error code. If this code is zero (and bit 0 is zero), the run completed successfully. If
bit 0 is zero and this field is non-zero, the field indicates a warning code. If bit 0 is a one, this field
indicates an error code. The codes are defined in the documentation.

In addition to this result word, OBJECT/EMAIL writes to its TASKFILE a printed trace of the network
interactions it has with its MTA. After a successful send, this file is purged unless the TRACE option is set. If
there is an error, you can use this trace data to help understand what went wrong.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 21

The basic command syntax for OBJECT/EMAIL came almost directly from the old A Series Mail product.
The parameter string for the program has five main parts:

• A command keyword of SEND or SUBMIT.
– SEND indicates you are sending an email message.
– SUBMIT indicates you are submitting a news group posting.

• An optional list of sending options. If present, these options must be preceded by a colon (:). The
options are written in a comma-delimited list. Spaces may be present around the commas and between
tokens in the option syntax.

• A list of email addresses, or email references that eventually resolve to email addresses. For the SUBMIT
command, this list takes a slightly different form, as submissions are made to news groups rather than
email addresses.

• The subject line of the message, preceded by a double-slash (//). The text of this line may not contain a
double-slash, as that is what delimits it from the next part.

• The body of the message, again preceded by a double-slash (//). This part (and its preceding double-
slash) can be omitted if desired. The body can be obtained from a file, as will be discussed shortly. The
body text can contain double-slashes. If present these are translated into carriage-return/line-feed
sequences in the outgoing message. A caret (^) in the body text will have the same effect.

We will not delve into news groups and the SUBMIT command any further in this presentation. Except for a
difference in the way that messages are addressed, it works similarly to the SEND command.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 22

Perhaps the most important part of the parameter syntax is that which routes the message to recipient
addresses. The list of addresses is actually four lists, separated by ampersands (&).

• The first list is for To: addresses.
• The second list is for CC: addresses.
• The third list is for BCC: (blind copy) addresses.
• The fourth list is for Reply-to: addresses. This defines the default list of addresses to which a reply to

the message will be sent by a recipient.

All lists are optional (i.e., they may be empty), but the ampersands are necessary to delimit one list from
another. The ampersands for any trailing empty lists may be omitted. Thus, a message with only To: and CC:
addresses would only require one ampersand, the one separating those two lists.

Each of these four lists is composed of comma-delimited email reference entries.

Each reference entry in the list can be one of the following:
• An asterisk (*). This implies the message will be sent to the sending user, provided an email address is

configured in their USERDATA record.
• A standard email address, which can have one of these forms (the "<" and ">" are literal in this case):

– name@host.domain
– Display Name <name@host.domain>
– "Display Name" <name@host.domain>

• An MCP usercode. The message will be sent to the email address configured in that user's USERDATA
record.

• An MCP usercode at a BNA hostname. The message will be sent to the email address configured for the
specified user at the specified BNA host.

• A percent sign (%) followed by an MCP file title. This is a form of distribution list. The file contains a
list of email addresses. Multiple addresses in one record must be separated by commas. The file can be
of any CANDE-editable filekind.

• A crosshatch (#) followed by an alias name, which is another form of distribution list. The alias must
have been defined previously in the user's CANDE/MYOPTIONS file or the global
*INSTALLATION/OPTIONS file.

Note that the %<file title> and #<alias> distribution lists are fully recursive. Files may reference other files
and aliases. Aliases may reference files and other aliases.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 23

This slide shows the parts of a fairly full parameter list.
• The SEND command indicates we are sending an email message rather than a news group submission.
• The colon (:) following SEND introduces an option list, which continues for two lines, until a comma

delimiter is no longer encountered.
• The next line is the To: list with two email address entries.
• The next line (beginning with &) is the CC: list, also with two entries, an alias and a file distribution list.
• The next line (beginning with the second &) is the BCC: list, which has one email address.
• The next line (beginning with the third &) is the Reply-To: list, containing a single alias entry.
• The next line (beginning with //) is the subject line for the message.
• The remainder of the parameter (beginning with the second //) is the body of the message. Note that it

contains another // and a ^ to indicate embedded newlines.
• The file equation on the SIGNATURE INTNAME copies the contents of the specified file at the end of

the body as a signature block.

The WFL IF statement at the end isolates bit [0:1] of the TASKVALUE result and checks it for an error
condition.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 24

OBJECT/EMAIL has a number of files that can be equated at run time to supply additional data for use in
composing a message. All of these files can be specified in the parameter string syntax, but file equation is
often more convenient, especially when running the utility program from WFL jobs.

There are three INTNAMES which can be file-equated simply to supply parameters to the program. These
internal files are never used to open a physical file.

• SMTP uses the YOURDOMAINNAME and NOTE attributes. YOURDOMAINNAME overrides the primary
email server address in the global configuration file. NOTE overrides the list of alternate email servers.

• NNTP uses YOURDOMAINNAME and NOTE in the same fashion, but these attributes provide overrides
for the primary and alternate news servers.

• ORGANIZATION uses only the NOTE attribute to supply an override *ORGANIZATION string for news
group submissions.

OBJECT/EMAIL also supports file equation for each of the four mail address lists. These files have the same
format as the %<file title> distribution lists, and can be prepared using any CANDE-editable filekind:

• TO

• CC

• BCC

• REPLY-TO

Finally, there are three files that can supply additional text used in composing the message:
• BODY supplies text for the body of the message. If the parameter string includes body text (after the

second //), the contents of this file are simply appended to any body text contained in the parameter
string.

• SIGNATURE supplies a signature block for the message. The text of this file is appended to the end of
any body text.

• XHEADERS supplies additional "user" headers for the message. The records from this file are appended
to the end of the message heading. This file is for advanced situations and is seldom used.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 25

I have mentioned sending options several times thus far, and we have finally arrived at the point where we
can talk about them in detail. These options can appear as defaults in the global and user configuration files.
They can also be included in the parameter string as a comma-delimited list, preceded by a colon, following
the SEND or SUBMIT command. There are almost 20 of these options, which I'll discuss over the next several
slides.

• FROM provides an email address for the sender. This option overrides any default address in the user's
USERDATA record or *EMAIL entry in CANDE/MYOPTIONS. It can be specified as

– An asterisk (*, meaning use the email address in the user's USERDATA record).
– A standard email address
– A #alias name.

• LOGIN provides user name and password credentials to access the email server (MTA) for sending
messages. A default can be specified in the global or user configuration file. At present, there is no way
to secure the password.

• RECYCLE indicates the number of times to retry a failed attempt to send a message. If the <integer> is
not specified, the message will be retried once. The retry mechanism used by OBJECT/EMAIL will be
discussed in more detail a little later in the presentation.

• RETRYQUEUE indicates the WFL queue to be used for retry attempts.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 26

Continuing the discussion of sending options…
• RRR places a header in the message that requests the receiving MDA or MUA to send a return receipt

notice. Note that you can only request the receiver to send this notice. Some users configure their email
clients not to return receipts.

• BCCSELF instructs OBJECT/EMAIL to add the sender's email address to the message's BCC: list.
Since OBJECT/EMAIL does not maintain message folders, it does not retain any record of having sent a
message. This option allows you to send a copy to your standard mailbox, from which presumably you
will archive it.

• RTF, RICHTEXT, and RTEXT are all synonyms for an option that will cause the message to be sent as
"rich text." Note that this is not the same as Microsoft's RTF for Office documents. This form is a
simplified HTML-like markup notation that is defined in RFC 1896. You must compose the message
using the markup yourself. All that this option does is indicate the receiver is to interpret the body
according to RFC 1896 by including a Content-Type: header of "text/enriched" in the
message.

• MIME indicates that the message is to be formatted with MIME (Multi-purpose Internet Message
Extensions) headers. This option is set automatically when you specify the RTF or ATTACH options.

– With MIME disabled, no Content-Type: header will be inserted into the message by
OBJECT/EMAIL, and most email clients will interpret the body of the message as plain text

– With MIME enabled, the program will examine the type of data in the body (particularly its file
name extension) and insert an appropriate Content-Type: header in the message. OBJECT/EMAIL
understands some common extensions, such as .TXT, .CSV, .RTF (for RFC 1896 enriched text),
.HTM, .HTML, and the symbol file extensions used with Client Access Services.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 27

Continuing the discussion of sending options…
• SEQUENCE indicates, when equating a file with CANDE-style sequence numbers for the body, whether

the sequence numbers are to be included in the message.
• MARKID similarly indicates whether the mark field of a file used for the body should include the

patchmark data.
• TEST is useful for testing message composition. It ignores the address lists and sends the message only

to the sending user's email address.
• TRACE causes the detailed trace of message traffic between OBJECT/EMAIL and the MTA to be saved

when the program terminates. This trace is always created and written to the program's TASKFILE, but
by default it is purged upon a successful send or on any retry attempts after an unsuccessful send.

Continuing the discussion of sending options…

• AUTHENTICATE controls whether OBJECT/EMAIL will unconditionally initiate an authentication
sequence with the MTA. Normally, the authentication sequence is triggered by a challenge request sent by
the server, but some MTAs do not send such challenges, and consequently may refuse the message. This
appears to be particularly common when using SSL. Setting this option to ON will force OBJECT/EMAIL
to send its LOGON credentials at the beginning of its dialog with the server.

• SECALLOWSELFSIGNED specifies whether self-signed certificates will be accepted from the MTA for
SSL connections. Be default, OBJECT/EMAIL will not accept such certificates.

• CLIENTCERTIFICATE specifies the name of the client certificate to be used for SSL connections. If this
is not specified, the default certificate will be used.

• EXPIRES indicates the number of days a message is to be retained by the news group server. It is used
only with NNTP and the SUBMIT command.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 28

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 29

Continuing the discussion of sending options…
• BODY specifies a file that will be appended to the body text of the message. This option is an alternative

to file-equating the BODY INTNAME. It is typically used when calling OBJECT/EMAIL library entry
points, since file equation cannot be applied in that case. Note that OBJECT/EMAIL understands the
format of an MCP printer-backup file and will translate such a file to standard text format.

• ATTACH specifies a file to be attached to the message. The file can be given a different name in the
attachment using the AS clause. The format of the attachment varies depending on the WRAP option,
discussed on the next slide. You can attach a printer-backup file and have it converted to standard text
format as for BODY. Unlike the BODY option, however, you can have multiple ATTACH options in the
option list; each one will attach its file to the message.

• A second form of ATTACH option will wrap one or more MCP files and attach the resulting container
file to the message. This is indicated by enclosing the file name or list of names in square brackets ("["
and "]") and is useful if you want to send non-text MCP files, or send the file in such a way that all of its
internal formatting and file attributes will be preserved when it is unwrapped back into the MCP
environment. This form of attachment is unaffected by the WRAP option – it always wraps the files
before attaching them.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 30

Completing the discussion of sending options…
• WRAP indicates whether single-file attachments (those specified without enclosing square brackets) are

to be attached as-is, or wrapped first and the wrapped result attached:
– ON (or just specifying WRAP by itself) indicates all attachments are to be wrapped.
– OFF indicates no attachments are to be wrapped.
– * indicates that only non-symbol files are to be wrapped. Symbol files will be attached as plain text.

• SIGNATURE can be specified as an alternative to file-equating the SIGNATURE INTNAME, but has a
couple of additional options.

– Specifying a file name causes the contents of that file to be appended to the body as a signature
block, as for the file-equation alternative.

– Specifying a string of text causes that string to be appended to the body as the signature block
– Specifying OFF indicates that no signature block is to be appended. This can be used to inhibit a

default signature specified in the global or user configuration file.
• XHEADERS can be specified as an alternative to file-equating the XHEADERS INTNAME. The specified

file supplies a list of additional headers that are appended to the heading portion of the email message.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 31

This slide shows a sample execution of the program from CANDE that illustrates a number of the sending
options. This example has been reformatted to highlight the individual options. Note the colon (:) following
the SEND command. Also note that the keywords are case-insensitive in the parameter string syntax:

• FROM supplies a sender address that overrides any default that has been configured in USERDATA or the
CANDE/MYOPTIONS file.

• LOGIN supplies credentials for the MTA server. Note that special characters and case sensitivity can be
preserved by enclosing the password in single quotes (').

• BCC indicates the program should add the sender's email address to the BCC: list. This is an abbreviation
for BCCSELF. For the on/off options, ON is implied if neither value is specified.

• SIG OFF indicates no signature block is to be composed, even if a default signature has been specified
in one of the configuration files.

• RECYCLE indicates that OBJECT/EMAIL is to retry sending the message up to five times.
• RETRYQUEUE indicates that any retry attempts are to be run from the specified WFL queue.
• BODY specifies a file to be appended to the body text specified at the end of the parameter string.

Presumably this is an MCP printer-backup file, so it will be translated to standard text format.
• ATTACH specifies that the three files in the bracketed list are to be wrapped into a container and that

container file attached to the message with a name of "dat.con".

Since the final ATTACH option is not followed by a comma, it terminates the list of options, and the next
token in the parameter string is the start of the To: list of email addresses.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 32

Thus far, we have been discussing the use of OBJECT/EMAIL as a utility program you run from WFL,
CANDE, or MARC. You run the program, pass it a string parameter, possibly apply some file equation, then
it generates the message and sends it to the specified MTA.

OBJECT/EMAIL also functions as a library, and all of the things you can do with it as a running program
(except the file equation) can be done by calling one of the library entry points. Simple Install defines the
OBJECT/EMAIL codefile as a system library (SL) with the function name EMAILSUPPORT.

When used as a library, the program has three entry points, each designed for a different language
environment.

• EMAIL is designed for Algol. It takes a single pointer expression as a parameter. The pointer expression
references a parameter string in the same format as discussed previously. The program expects the string
to be terminated with a NUL (hex 00) character. The entry point returns an integer value in the same
format at the TASKVALUE result, with an error flag in bit [0:1] and an error code in bits [7:7].

• EMAIL_COB is designed for COBOL. It takes two parameters, the name of an 01-level record area, and
an integer data item of USAGE BINARY. The record area contains the parameter string and the integer
item indicates the length of the string. The result value (which must also be an integer with USAGE
BINARY) is the same as the TASKVALUE result.

• EMAIL_LINC is designed for the LINC/EAE/ABS environment. The message is in GLB.PARAM. The
result code is returned in the first three characters of GLB.PARAM and any warning code in the second
three characters.

The documentation shows examples for each of these entry points.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 33

All of the OBJECT/EMAIL library entry points take a string parameter that has the same format as the one
used when running the codefile as a program. Since no file equation is possible with library calls, you must
use the <option list> equivalents, BODY=, ATTACH=, SIGNATURE=, etc.

All of the entry points return a result value. For COBOL and Algol, this result is an integer with the same bit-
field format as the TASKVALUE result discussed earlier for the program. The error/warning codes are defined
in the Unisys documentation.

Note that a successful result of zero implies only that the message was accepted for delivery by the MTA. As
with all email, actual delivery to the recipient may take place a significant amount of time later. There is no
way within the MCP environment to know that a message did or did not reach the intended destination. Since
OBJECT/EMAIL is a send-only MUA, the From: or Reply-To: address in the message should refer to a
"real" mailbox where return receipts and bounce notices can by sent by the MTA.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 34

This slide shows a simple example of the Algol EMAIL entry point. Note that the parameter string must be
terminated by a NUL (hex 00) character.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 35

This slide shows a simple example of the EMAIL_COB entry point for COBOL. The first parameter contains
the parameter text and the second parameter contains its length.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 36

Because email usually involves exchanging data across a network, messaging does not always work the first
time, and sometimes does not work at all. OBJECT/EMAIL has a basic retry mechanism it uses when it is
unable to successfully send a message to its MTA.

Note once again that success in terms of OBJECT/EMAIL is having the message accepted by its MTA, i.e.,
the primary email server or one of the alternates specified in the global configuration file. Once that first
MTA accepts the message, OBJECT/EMAIL is done with its job. Delivery to the recipients is the MTA's job.

Therefore, the kinds of problems that typically invoke the OBJECT/EMAIL retry mechanism are those that
involve contacting the MTA. Common types of problems are that the program cannot connect to the MTA,
the connection is interrupted, authentication of credentials is not successful, or that there is a mismatch
between the SMTP options supported by the two ends of the connection.

As mentioned earlier, OBJECT/EMAIL writes a printer trace of the message traffic between it and its MTA
to its TASKFILE. The file is by default purged after a successful send, but is retained by default after the first
unsuccessful transmission. This trace can prove very useful in determining what went wrong.

When a send to the MTA is unsuccessful, OBJECT/EMAIL constructs a WFL job to run the program again
using the same parameter string and file equations as for the initial attempt. The name of this job will be
EMAIL/RETRY/n, where n is the retry count (1, 2, 3, …). The program starts this job with a STARTTIME to
schedule the retry after a delay. The first four retries are scheduled for 2, 5, 10, and 30 minutes after their
predecessor attempt, respectively. Subsequent retries are scheduled every hour. No TASKFILE trace is
retained for these retries unless you had explicitly set the TRACE sending option in the original parameter
string.

The number of retry attempts is determined by the RECYCLE sending option. The RETRYQUEUE option
specifies which work flow job queue the retry jobs will be inserted into. The default (when RECYCLE is not
specified) is that OBJECT/EMAIL will retry sending the message once and then give up. If you specify
RECYCLE>0, the program will start jobs under the schedule described above until the send attempt succeeds
or the retry count is exhausted, whichever occurs first.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 37

This slide shows a sample TASKFILE trace from an OBJECT/EMAIL run. The first few lines show the
program version, CCS settings, repeat the parameter string, and indicate which MTA was contacted. In this
example, the MTA is a Fedora Linux system running Postfix.

Following that is a trace of the message traffic (if any) between the program and the MTA. Each message is
shown on two or more lines, surrounded by blank lines. The message text is shown in CANDE "hexplicit"
format, where non-graphic characters are displayed in hex, with the first hex digit of the on the line with the
printable characters and the second hex digit on the line below.

The following shows an example of one message. The first token indicates the type of operation. READ
indicates data received from the MTA, FINAL indicates the final (or only) chunk of data sent to the MTA by
the program for a given protocol message. LEN= indicates the message length in characters. The text of the
message is shown between the "==>" and "<==" arrows. On the second line, the first token is the time of day
in hours/minutes/seconds. The second token is the line number within OBJECT/EMAIL where the operation
took place.

READ LEN=39 ==>220 s1.digm.com ESMTP Postfix (2.5.6)02<==

093021 34500000 D5

Only the first READ operation is shown on the slide in its original format. To save space and allow the entire
session to fit on the slide, the remaining blank lines have been removed, along with the second line of trace
data. The hex 0D and hex 25 (carriage-return and line-feed) characters were replaced by "|" and "~"
characters, respectively.

This trace represents a successful send. You can see the SMTP commands being exchanged between
OBJECT/EMAIL and the MTA, along with the headers and body text of the message. SMTP replies from the
MTA begin with a three-digit status code. If there are problems communicating with the MTA, these status
codes and their messages are one of the first places to look. These status codes are defined in the SMTP
standard, which was originally RFC 821, then 2821, and is now 5321.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 38

That completes the discussion of the OBJECT/EMAIL program and how you use it. Having that information,
the question is now, what good it? This next section of the presentation discusses some potential applications.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 39

OBJECT/EMAIL has a number of advantages.
• First, you already have it. The program has been bundled with every ClearPath MCP release since 7.0

(SSR 48.1).
• Second, it is quite easy to use. The program has a lot of options, but you don't need to know many of

them in order to send a simple message.
• Third, it's easy to configure. You need one line in the *INSTALLATION/OPTIONS global

configuration file to define the MTA, and an email address either in your USERDATA record or an entry
in your CANDE/MYOPTIONS file. With just that setup, you can send messages, unless the MTA
requires authentication or something else special.

• Fourth, OBJECT/EMAIL has very basic email composing and sending capabilities, but they are
effective ones in the server-oriented MCP environment. Other solutions have more features, but
OBJECT/EMAIL is suitable for many useful tasks. It is also not an either/or situation – you can combine
the use of OBJECT/EMAIL with other email solutions, picking the one that is most suitable for each
task.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 40

Here are some examples of uses for OBJECT/EMAIL:
• Error/success notifications from WFL jobs.

This is the perhaps primary use for the program. Given WFL's ability to detect success or failure of the
tasks in a job, it is easy to run OBJECT/EMAIL as part of the job and send a message to indicate that an
activity has completed successfully or has had some problem. You can even attach files and printer
output to document a problem.

• Support for Cloud and "lights-out“ operations.
Many data centers run unattended, especially during non-prime hours. If you have moved your MCP
system into the Cloud, the need for remote, automated operations reporting is even more severe.
OBJECT/EMAIL can help automate operations by sending status and error notifications, and
automatically distributing data in the form of email attachments.

• Sending email directly from application programs.
The API mode of OBJECT/EMAIL makes it very easy to compose and send messages from
applications, even those written in COBOL.

• Email yourself a data or printer backup file.
We have lots of ways to exchange data between the MCP environment and workstation environments –
FTP, shared network directories, Telnet, PWB, etc. OBJECT/EMAIL gives us another one. It is very
easy to email a data or printer file to yourself or a colleague. You only need to know the name of the file
and can then include it in the body of the message or include it as an attachment. This is a little more
difficult for spooled printer files, but by setting the file attribute USERBACKUPNAME=TRUE, you can
control the name of a printer-backup file so that it can be attached to a message programmatically. I do
this quite frequently. If you are going to do a lot of printer distribution by email, though, EOM or
Goldeye PrintMailer are much more convenient (and probably more efficient) solutions to use.

• Software/data distribution to remote sites.
If you have multiple MCP sites, OBJECT/EMAIL gives you a way to distribute data, and even object
code, to those sites. This is probably not be best approach for really big files, but the program's ability to
wrap files before attaching them to an email message allows you to send virtually any MCP file to
anyone who has an email address.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 41

The preceding slide discussed some general ideas for employing OBJECT/EMAIL. The next series of slides
describes an application of the program I made for a real "lights-out" environment.

I had a customer in Canada that was running a custom in-house application on a Libra 460, which has since
been shut down. They had no on-site MCP operations staff or system expertise. In fact, their Libra sat in a
locked room at a satellite facility about 60 miles from the main office where most of the users were located. I
was their MCP support, and only visited the site infrequently. I supported them from San Diego over an
Internet VPN, using Telnet, Terminal Server, PWB, network shares, FTP, and… OBJECT/EMAIL!

Their batch processing requirements were modest. Users initiated batch reports from a menu-based COMS
application that built parameter strings and started WFL jobs. Reports printed automatically. They had a few
regularly-scheduled jobs – primarily backups and file extracts. The Libra did not have a tape drive, so we
used a combination of SYSTEM/FILECOPY and WRAP to generate container files, which got transferred to
the Windows side of the Libra, where they were picked up by a Windows-based network backup system.

I built a "Schedule/Master" job that did a start on itself every weekday just after midnight. This job in turn
started the other scheduled jobs with an appropriate STARTTIME. To monitor the scheduled jobs, each one
generated "marker" files (which are just directory entries; they have no data) to indicate they had finished
successfully. The scheduled jobs generated email messages if they detected problems in their processing. The
master job checked for these marker file at the end of the day and generated emails if any were missing. This
ensured that problems got reported even if one of the scheduled jobs crashed or got DS-ed before it could
generate any emails. I wrote a WFL $INCLUDE file of email routines to standardize the error reporting and
make it easy to use.

The master job also ran some LOGANALYZER reports at the end of the day and emailed them to me and
another contractor who did application program support. We used these to determine if any programs aborted
during the day. If necessary, we analyzed programdumps (which the system is configured to write to PDUMP
files) by emailing the analyzed printer files. We used EOM to email these reports, because we had email
configured in EOM, but with just a little bit of work, we could have used OBJECT/EMAIL do this instead.

This was only a couple of days' work to set up, and frankly, it worked great for many years. Instead of
constantly monitoring the system, we were been quite successful in getting it to tell us when there was a
problem that needed attention. I often knew by the end of my day in California whether a problem occurred,
and sometimes could have a correction in place before work at the customer site started the next day.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 42

This slide shows an extract from the WFL $INCLUDE file of email routines I wrote to support email
notifications from the scheduled jobs. The source for these routines and some of the scheduled jobs is
included in the sample files accompanying the presentation materials.

The file has just three routines:
• EMAILER formats a parameter string and executes OBJECT/EMAIL as a program. It accepts string

parameters for the email address list, the subject line, message body text, sending options, and an
optional file title for more body text. This routine contains mostly string manipulation code to format the
parameter for OBJECT/EMAIL. This formatting code has been excluded from the slide.

• NOTIFY is a utility routine to call EMAILER to send a simple message with a heading containing the
date, time, job mix number, and job name.

• TASKNOTIFY calls NOTIFY to send a more complex message. This routine is intended for use when a
task terminates. In addition to the heading formatted by NOTIFY, this routine reports the task's mix
number and name, history attributes (which describe the type of abort), TASKVALUE, and stack history
string (the list of code addresses and line numbers of the most recent procedure calls).

We will see some examples of the output from these routines on the next few slides.

We maintained a list of email addresses where messages were to be sent in a text file,
CANDE/NOTIFYLIST, under the production usercode that was used with the scheduled jobs. Those
message are sent to the application support contractor, the IT manager, and me. The name of that file, along
with its "%" prefix to indicate a file-based distribution list, is stored in the WFL variable
EMAILNOTIFYLIST, which is part of the $INCLUDE file.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 43

This next slide shows a portion of the code from the daily backup job. This snippet attempts to transfer a
wrapped container file produced by the backup to a network share on the Windows side of the Libra 460 (the
name of which is in the variable BUSHARE). The transfer is done in a loop using the SMB file transfer utility
*SYSTEM/NXSERVICES/PCDRIVER that is bundled with the standard MCP release.

If the file transfer utility terminates abnormally, the job calls TASKNOTIFY to tell us about it and restarts the
transfer. After some number of unsuccessful retries, the job gives up and sends us message to say so. If a retry
is successful, the job also sends us an email so we know we can ignore the previous error messages. If the
transfer succeeds on the first try, no email is sent at all. MARKMAKE is a routine that will generate a "marker"
file (the source for these routines, also in a WFL $INCLUDE file, are included with the presentation samples
as well).

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 44

On a good day, when everything went properly with the scheduled jobs, the master job sent us one email to
give us the news.

The message shown on the slide is an example of output from the NOTIFY routine.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 45

If one of the scheduled jobs did not complete successfully, the master job sent a summary email at the end of
the day listing the jobs that had problems. This message was sent instead of the "good news" one on the prior
slide. The failed job would typically have sent a more detailed message about the problem prior to this one,
unless it aborted or was DS-ed.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 46

This slide shows an example of a message sent when one of the scheduled jobs detects a problem. This
message is an example of the output from the TASKNOTIFY routine.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 47

One final example – this slide shows how to email a printer file to yourself using OBJECT/EMAIL:
• The job generates a string value and stores it in the variable LOGNAME. This value will be used to name

the printer file and is designed to be reasonably unique.
• The WFL LOG statement runs SYSTEM/LOGANALYZER. The file equation for LINE affects the printer

file that LOGANALYZER produces. The attributes specified are:
– USERBACKUPNAME controls how the printer-backup file will be named. The default, when this

attribute is FALSE, is to use the system's BD/= naming convention. When TRUE, the name of the
printer-backup file is taken from the FILENAME attribute.

– FILENAME indicates the name to be assigned to the printer-backup file. Since you are generating
this name, you need to take care that the name is unique and will not cause a previously-created file
of the same name to be removed.

– FAMILYNAME can be used to specify the disk family where the printer-backup name will be written
by the system. If this is not specified, the file will be written to the DL BACKUP family. Do not use a
TITLE or LTITLE attribute that contains an ON clause to name the printer-backup file. The
presence of the ON clause changes the file to KIND=DISK.

• The WFL statements following the LOGANALYZER run deal with the results. If the run completed
successfully, the job executes OBJECT/EMAIL and file-equates the printer-backup file so that it will
become the body of the message (note that no body text is present in the parameter string). If there is an
error, the job sends an email message similar to the one for the TASKNOTIFY routine discussed earlier.

This job does not dispose of the printer backup file that was generated. It could be removed by the job,
released for normal printing, or perhaps cleaned up later by some site-developed file retention and purging
process.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 48

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 49

The documentation for OBJECT/EMAIL is contained in the Unisys System Software Utilities Operations

Reference Manual. The MYOPTIONSUPPORT entry points to GENERALSUPPORT are described in
Appendix A of that Document.

The standards for email are contained in Request for Comments (RFC) documents, all of which are available
from the IETF web site.

The Goldeye web site provides information on their MCP email products and provides contact and pricing
information.

The MGS web site provides information on the features and capabilities of DELIVER.

Finally, a copy of this presentation and a set of demonstration and sample files is available on our web site
under the URL shown on the slide.

Using MCP EMAIL, 2.0

2021 UNITE MCP-4021 50

