
(Kevin gives apologies for absence)

A common concern of MCP customers is how to allow multiple users to share
access to files. An example might be a report produced by a production run that
would typically reside under the production usercode.

How can we safely and simply allow access to such files without compromising
security?

I DidnI Didn’’t Know You Could Do That!t Know You Could Do That!

An Alternative Method for File An Alternative Method for File
SharingSharing

Kevin Stones
Locum Software Services Limited

MCP4056

Firstly, let’s have a look at the possibilities. We can always copy files to individual
user directories, but that’s not an ideal solution.

Many customers deploy accesscodes for file sharing, where a common usercode is
shared by a group of individuals. This is a very general solution, not tailored for
specific files.

Guardfiles provide a more specific access authorisation, but can be awkward to
maintain. I have seen situations where guardfiles are not attached to any file, or
where the guardfile attached to a data file no longer exists!

Handing out PU privilege will work, but is not easy to hide from the auditor!!!

Granulated privileges such as the READ attribute on the usercode is only useful if
you want to grant access to all files on the system.

This leads us to POSIX-style security which I believe to be more refind solutions in
most cases.

POSIXPOSIX--style Securitystyle Security

Review of file-sharing mechanisms

• Accesscodes on individual users

• Guardfiles

• PU privilege (surely not!)

• Granulated privilege (e.g. READ)

• POSIX-style security

POSIX-style security is based on the concept of Owner, Group and Other access.
Each category can be given read, write, or execute access, in any combination.

The Owner of a file is typically, but not necessarily, the usercode of the creator. We
can establish a group of users by attaching the GROUPCODE user attribute in
Userdatafile to individual usercodes. ‘Other’ is defined as any usercode not defined
by Owner or Group.

We can allocate this type of file security through the Work Flow statement ALTER,
which can be used at either file or directory level.

And the coolest aspect of this mechanism is that POSIX-style security does not
require Permanent Directories to be established. This is a common misconception!
It also makes things very much easier. This is the ‘I didn’t know you could do that’
moment!

POSIXPOSIX--style Securitystyle Security

• Groupcode usercode attribute

• POSIX-style permissions on file:
Owner, Group, Other

• Can allocate file security via WFL:
ALTER statement at file or directory level

• No need to use permanent directories!

So, let’s have a look at the process of implementing this mechanism.

(Maybe read out the text of the slide).

POSIXPOSIX--style Securitystyle Security

Case study (example)

I want to make all files in the directory (TSC)BATCH/=
available to my operations staff for read-only purposes

The operations people have usercodes of OPS1, OPS2,
OPS3

MCP attempts to interpret ‘traditional’-style security in terms of POSIX. You can see
here that this file can only be accessed by the usercode under which it resides (or
by a privileged user, of course).

The POSIX interpretation shows access is allowed only to the owner.

POSIXPOSIX--style Securitystyle Security

The current security on the batch files is:

lfil batch/1 :sec
#RUNNING 35855
#?
ON WORK
(TSC) : DIRECTORY
. BATCH : DIRECTORY
. . 1 : JOBSYMBOL SECURITY=OWNER TSC:RWX, GROUP <none>:NO,
OTHER:NO

PRIVATE (I/O)

Now, I’ve changed security via the ALTER statement on the BATCH directory to
give the group OPS read-only access.

The LFIL response confirms the new access rights. We can see that the owner is
still TSC with full access rights, but group OPS are allowed to read the file. Note
that MCP attempts to interpret this in terms of traditional MCP file security (hence
the ‘PUBLIC (IN)).

POSIXPOSIX--style Securitystyle Security

wfl alter batch/= (group=ops, grouprwx=r)
#RUNNING 35864
#35864 PK501 64 FILES ALTERED IN BATCH/= ON WORK
#

lfil batch/1:sec
#RUNNING 35865
#?
ON WORK
(TSC) : DIRECTORY
. BATCH : DIRECTORY
. . 1 : JOBSYMBOL SECURITY=OWNER TSC:RWX, GROUP OPS:R,

OTHER:NO PUBLIC (IN)
#

All that remains is to establish the group OPS in Userdatafile. This slide shows the
groupcode attribute being set to OPS for usercode OPS1. Repeat for OPS2 and
OPS3.

POSIXPOSIX--style Securitystyle Security

Now I logged on as OPS1, and you can see here that I am allowed to list the
contents of file (TSC)BATCH/1.

POSIXPOSIX--style Securitystyle Security

l (tsc)batch/1 on work
#FILE (TSC)BATCH/1 ON WORK
100 TIME 0000 today to now
150 FORMAT SCA
200 FILE
300 ex *
#

Logging on as OPS1…

Here is a summary of the 2 steps required, which can be performed in either order.

Note that group privilege can also be assigned to the files via Work Flow file
equation, or programmatically. The suggested method is probably the easiest; the
ALTER statement would need to be embedded in the appropriate Work Flow job so
that the change occurs after the file has been created.

POSIXPOSIX--style Securitystyle Security

In summary…

• Allocate a GROUPCODE to your users

• Apply group privilege to your file(s) via:

• WFL ALTER statement

• File equation

• Program change

• Away you go!

The case study shows a simple scenario. For more complicated situations, help is
at hand via these reference documents.

POSIXPOSIX--style Securitystyle Security

Of course, can get much more complicated

Other attributes to consider:

• GROUP (file),
• ALTERNATEGROUPS (file),
• SUPPLEMENTARYGROUPS (task)

References:
• I/O Subsystem Programming Guide
• Work Flow Language (WFL) Programming Reference Manual
• File Attributes Programming Reference Manual

